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Geographical epidemiology, spatial analysis and
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We provide a relatively non-technical glossary of terms and a
description of the tools used in spatial or geographical
epidemiology and associated geographical information
systems. Statistical topics included cover adjustment and
standardisation to allow for demographic and other
background differences, data structures, data smoothing,
spatial autocorrelation and spatial regression. We also discuss
the rationale for geographical epidemiology and specific
techniques such as disease clustering, disease mapping,
ecological analyses, geographical information systems and
global positioning systems.
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‘‘Place’’ can usually be applied as a surrogate for
the interaction between genetic factors, lifestyle
and environment.1 Although the role of place in
human health has been recognised historically,2

the focus in public health research has mostly been
on person and time, with little consideration of the
implications of place.3 Most public health specia-
lists seem to have forgotten the space dimension of
disease processes.4 This is a pity, as comparison
between places, together with comparisons
between times and between individuals, is a useful
means of formulating and testing aetiological
hypotheses. In addition, from the perspective of
public health practice, knowledge that a health
problem is concentrated in identifiable places is
essential for the efficient distribution of resources
for prevention, treatment or amelioration. There
have been several reasons for this apparent lack of
interest in place, including a dearth of appropriate
databases and insufficient appropriate software.5

However, substantial recent advances in geogra-
phical information systems (GISs) now provide
researchers and public health practitioners with an
excellent environment in which to explore their
data.6 In addition, there is an increasing number of
public health databases, in which the locations of
the cases are recorded. It seems likely, therefore,
that once they have understood its utility, scien-
tists and public health practitioners will seek to
use this spatial information.

At first glance, spatial analysis and its tools
appear dauntingly complicated. This is not so, but
there is a need for a glossary to explain common
terms in geographical epidemiology, spatial analy-
sis and GISs.

Adjustment
Age, sex, socioeconomic and other variables vary
from one place to another and may also influence
the risk of the diseases. Observed differences in
risk of illness or death are likely to be confounded
by these variables and, therefore, comparisons of
risk must take this important issue into account.
The process of adjustment for potential confound-
ing variables has an important role in the evalua-
tion of the spatial variation in mortality and
disease rates. The aim of an adjustment process
is to produce a single summary value, such as the
standardised incidence rate ratio (see below),
which is unaffected by differences in the distribu-
tions of potential confounders.7 The two most
common approaches of adjustment are by direct
and indirect weighting of stratum-specific rates.
We illustrate the idea using adjustments for age
differences, as age is almost always considered to
be a confounding variable in epidemiological
studies. However, we emphasise that the same
procedure could be applied in adjustments to take
account of other confounder variables.

In the direct approach, a weighted average of the
age-specific rates from a study population is
created, based on the age distribution of a
reference population8—that is, the national popu-
lation.9 This is an estimate of the expected number
of deaths in the reference population if the age-
specific rates were the same as those that have
been observed in the study population. An easily
interpreted ratio is then obtained by dividing the
expected number of deaths in the reference
population by the observed number of deaths in
the reference population over the same period of
time.10 This ratio is termed either the comparative
mortality figure or standardised incidence rate
ratio, and was first proposed in 1884.11 In the
indirect method, the crude rate in the study
population is multiplied by a ratio known as the
standardised mortality ratio (SMR).8 The SMR is
calculated by dividing the observed number (O) of
cases within the study population by the expected
number (E) of cases in the study population,
assuming that the age-specific rates in the
reference population also applied to the population
under study.

It should be noted that if, for instance, the age
distributions of two areas differ, the comparison of

Abbreviations: GIS, geographical information system;
GPS, global positioning system; SMR, standardised
mortality ratio
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their SMRs (determined by reference to an external reference
population) may have a potential bias comparable with
statistical confounding.10 In other words, when compared with
an external reference population, the indirect method of
standardisation (the SMR) yields different rate ratios for
cohorts with a different demographic structure even though
the incidence rates within the demographic strata are identical.
Despite the cautions raised in the literature, however, SMRs
have been recommended for mapping by well-known statisti-
cians.12 However, directly adjusted rates also have problems. For
instance, they may provide less stable estimates because the
standard error of the rates depends on variations in the age-
specific number of cases rather than the total number of cases.10

In practice, the choice of selecting one of these methods
depends on the type of data available. The indirect method is
the only choice, for example, when the age-specific incidence
counts are unavailable for a reference population but its age-
specific rates are available.13

Data for spatial analysis
There are usually two important types of spatial data: point and
area data. Each item of health data (including population,
environmental exposure, mortality and morbidity) may be
connected with a point, or precise spatial position such as a
home, a street address or an area, which could be defined as a
spatial region by postcode, ward, local authority, province and
country.14 A public health specialist may also come across
spatial data in the form of continuous surface, such as the
statistical surfaces of pollution interpolated from fixed-point
characteristics.15

As data for spatial analysis come from different sources, and
have often been collected without taking into account the
interests of the geographical epidemiologists,16 it is absolutely
necessary to ensure that precise and complete point and/or area
health data are used in spatial epidemiology.17–20 In the
developed world, most of the mortality and cancer incidence
data have good quality. Nevertheless, other health data such as
rates of suicide, congenital anomalies and hospital admissions
may be subject to partial ascertainment (rates are under-
estimated). In addition, the diagnosis, collection, coding and
reporting of a given health outcome may differ between
geographical regions and over time.20

The danger of ignoring data-quality issues is that, because of
missing cases or inaccurate baseline population data, one might
arrive at a misleading (invalid) high or low estimated risk.21 22

Confidentiality may also be an important issue. Breaching the
confidentiality of spatial data may cause concern, especially
when it discloses areas with high rates of morbidity/mortality
or high levels of pollutants.14

Disease clustering
Searching for disease clustering is one of the branches of
geographical epidemiology that involves an assessment of local
or global accumulation of disease.23 There are different types of
clustering, including general and specific. General clustering
involves the analysis of the overall clustering tendency of the
disease incidence in a study region, and is paralleled by the
assessment of global spatial autocorrelation, in which the exact
location of clusters is not investigated. The second type of
investigation of clustering uses specific disease-clustering
methods, which are designed to examine the exact location of
the clusters.24 As we will discuss the importance of, and the
ways of detecting, global and local clustering in areal data in
the section below on spatial autocorrelation, here we will focus
only on the detection of clusters in point data.

Methods for the detection clusters in point format data are
more numerous than those for areal format data, and are
usually divided into the following three groups: global, localised

and focused (ie, assesses clustering around a putative source).25

There are a number of tests available that help to assess
different kinds of clusters in point format data. However, we
will discuss only three of them very briefly, and refer the
readers to Bailey and Gatrell,6 and Gatrell et al26 for a complete
discussion. Cuzick and Edwards’27 method determines global
clustering by examining the k nearest neighbours of each case.
The geographical analysis machine28 and the spatial scan
statistic29 assess the localised clustering by drawing circles of
different sizes over the area of study and compare the risk of
disease inside and outside of each circle. The spatial scan
statistic has an advantage over geographical analysis machine
in taking into account the problems of multiple testing.

Disease mapping
Data visualisation is the first step in disclosing the complex
structure in data.30 Data visualisation may not only create
interest and attract the attention of the viewer but also provide
a way of discovering the unexpected.31 Although plots of data
and other graphical displays are among the fundamental tools
for analysts in general, for a spatial analyst, visualising spatial
data usually means using a map.6 Disease mapping is one of the
branches of geographical epidemiology fulfilling the need to
create accurate maps of disease morbidity and mortality.23 For
instance, dot or dot-density maps are used to display point data,
whereas choropleth maps are used for areal data, and contour
or isopleth maps are used for continuous surface data.15 The use
of mapping in the medical context has developed so rapidly
during recent decades32 that the presentation of maps is now
established as a basic tool in the analysis of public health data.23

There are two main classes of disease maps for areal data:
maps of standardised rates and maps of statistical significance
of the difference between disease risk in each area and the
overall risk averaged over the whole map.33 There are pros and
cons for each of these classes. For instance, mapping rates in
small areas tend to create a misleading picture (see the section
Smoothing) while using statistical significance, particularly in
areas with large populations, produce small p values indicating
statistical significance, but do not disclose scientifically inter-
esting differences.34 The mapping of standardised rates is
generally preferred to the mapping of p values, controlling for
the influence of sampling variation by using a smoothing
technique (see the section on Smoothing).35

There are also other important issues that need to be
considered while creating a map. These include the selection
of an appropriate administrative unit for mapping, the selection
of an appropriate method of data classification in the map, and
the selection of an appropriate colour scheme or collection of
hatching patterns. We will not discuss these issues in detail
here. We will cover the optimum choice of mapping regions
very briefly in the following section, and for the other issues
refer the readers to other sources, detailed in the reference
list.18 36 37

Ecological analysis
Ecological analysis is defined as the assessment of the
associations between disease incidence (eg, suicide) and
variables of interest (eg, social or environmental covariates).23 38

These variables in an ecological analysis are defined on
aggregated groups of individuals rather than the individuals
themselves.39 The reason for focusing on the comparison of
groups rather than individuals is that individual-level data on
the joint distribution of two or more variables within each
group are usually missing. Therefore, an ecological study may
be considered to be based on an incomplete design.40

An ecological analysis can be crucially dependent on scale (ie,
the region based on the hypotheses under study).1 The
optimum choice of scale is a trade-off between making the
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groups (regions) large enough to have stable rate estimates and
also small enough to make them homogeneous in terms of their
socioeconomic and other important characteristics.19 If the
regions are large, there is a greater possibility that associations
measured at the aggregate level will differ from the same
association measured at individual level. This can lead to a
problem known as ecological fallacy,41 or cross-level or
ecological bias42—a situation in which one mistakenly infers
an individual-level association from one that is actually only
observed at the regional level. At the same time, if the regions
chosen are too small, the results may show spurious spatial
patterns due to random variation in small numbers of
events.43 44

The scale dependency of data may, therefore, cause what is
known as the modifiable areal unit problem, which arises from
the uncertainty induced by the aggregation procedure.15 For this
reason, it is important to take the scale of analyses into account
and, if possible, to analyse the data at two or more levels of
aggregation.45 It is also possible to overcome both scale
dependency and ecological bias by adopting a multilevel
approach using the individual-level and group-level data
together (see the next section).46 For instance, to understand
the effect of income on suicide,47 we have to have data on the
individual income and/or household income and area-level
income, the latter of which may be ‘‘compositional’’ (ie, fully
explained by the individual-level data) or ‘‘contextual’’
(irreducible to the individual—ie, an effect that persists even
after allowance for the individual-level data).48

Geographical epidemiology
Geographical epidemiology can be defined as the description of
spatial patterns of disease morbidity and mortality, part of
descriptive epidemiological studies, with the aim of formulating
hypotheses about the aetiology of diseases.49 One can identify
different branches in geographical epidemiology, which is a
reflection of the different needs of public health specialists and
epidemiologists in the assessment of ill-health aetiology.23

Predominant among the methods of geographical epidemiology
are the following: disease mapping, disease clustering and
ecological analysis.23 There is usually a close relationship
between these branches.50

However, as almost all geographical epidemiological studies
are descriptive in nature and depend on scale, one should bear
in mind that a more comprehensive picture of a spatial problem
can be achieved when the results of geographical aggregate-
level data are combined with those at the individual level.51

Multilevel modelling, hierarchical regression and contextual
analysis are phrases describing one of the various statistical
methods in which this combination is allowed.52 Multilevel
modelling is a powerful, relatively new technique53 that can be
used to determine how much of the ecological effect can be
explained by variations in the distribution of individual-level
risk factors,52 and recently attempts have been made to
integrate this kind of analysis into geographical epidemiol-
ogy.54 55 There are also new developments incorporating time
changes along with spatial variation. Such models are able to
provide new insights into the aetiology of diseases that are
otherwise unavailable.15

Geographical information systems
GISs can be defined as software systems for the automatic
capture, storage, retrieval, analysis and display of spatial data.56

The development of GIS technology dates back to the 1960s.57

GISs have dramatically changed the ability of epidemiologists
and public health specialists to work with spatial data.4 The
advantages of GISs are many, and include an ability to operate
repetitive tasks, quickly compare spatial data and handle large
volumes of data.4 Other advantages include the ability to ask

‘‘what if’’ questions (asking conditional questions—ie, what if
we locate a given hospital in place ‘‘A’’ rather than ‘‘B’’),
Boolean searches (finding places that fulfil two or more
criteria—ie, areas of high mortality and poverty), creation of
‘‘buffer zones’’ (circle a point data or centroid of an area data—
eg, a 5-km circle around a putative source) and using data from
remote sensing and global positioning systems (GPSs).4

However, historically, GISs have relied on their mapping
capabilities rather than performance of statistical analyses. This
is clear from the limited number and types of statistical
analyses that most GISs are able to perform.3 Until the full
integration of spatial statistical analysis into a GIS environment
is achieved, other solutions should be applied.3 These include
developing a ‘‘loose coupling’’ between a statistical package and
a GIS, or a ‘‘close coupling’’ designing either some statistical
functions within the GIS or adding some GIS tools into an
analytical package.6 For instance, one of the best known GIS
software is ArcView,58 for which a number of links with some
statistical packages have been developed.59 60 When GISs are
combined with spatial analytical methods, the result could
provide a helpful tool in the study of public health issues.61

Nevertheless, the users of GISs and readers of the output
should not study the attractive maps produced by the software
uncritically, and they should always remember the rules of
good data management, analysis, presentation and interpreta-
tion.37 62

Global positioning systems
A GPS consists of a system of at least 24 and up to 32 solar-
powered satellites orbiting Earth every 12 h and transmitting
radio pulses at very precisely timed intervals.63 To determine a
position in three dimensions (latitude, longitude and eleva-
tion), a receiver needs signals from at least four satellites.64 GPS
has become a standard method for data capturing in
geographical epidemiology and public health studies.25

Moreover, as the different components of a GPS receiver work
efficiently under severe weather conditions such as sandstorm,
torrential rain and high temperature, they could have a key role
in combination with GISs, especially in emergency humanitar-
ian activities.65

Smoothing
Mapping disease mortality or morbidity, especially in the
smaller geographical areas, or when the given disease is
somewhat rare, may give rise to the problem of small numbers,
which in turn produces unstable rates. Although greater
stability of rates may be achieved by choosing larger areas,
simple mapping of the raw data is unattractive in that it still
yields sudden changes at geographical boundaries.66 In such
circumstances, it is advantageous to ‘‘smooth’’ the local risk
estimate on the basis of the overall pattern of rates.6

The basis of this technique is that when the underlying
population of a given area is large and as a result the statistical
error of the rate estimate is small, the adjusted rate will be close
to the observed rate. However, when the underlying population
is small and, therefore, the statistical error correspondingly
large, the observed rate is shrunk by smoothing towards a value
representing the overall mean of the map.67 If spatial
autocorrelation tests confirm that there is a spatial dependency
(see the next section), the rates can be adjusted towards
averages of neighbouring rates rather than the overall mean.67

When we wish to improve the quality of a rate estimate for an
area with an unstable rate by ‘‘borrowing strength’’ from its
neighbours, a Bayesian analysis may be applied.68

When using smoothing, we are in effect making a prior
assumption that a rate estimate for a given area is better if it in
some way makes a combination of data from the area itself and
those from the surrounding areas. A Bayesian analysis is one
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way of achieving this combination. In a Bayesian analysis, an
assumed (prior) probability distribution for the values of a
parameter (the area rate) is converted (under the influence of
the observations—ie, the observed rates) to a posterior (ie, after
using the observed data) distribution for the values of that
parameter. This posterior distribution is then used to provide an
estimate for the parameter(the estimated rate for a given area)
together with a standard error for this estimate. With such an
approach, the prior distribution can be based on the results of
previous studies or on background knowledge. It is also
possible to base this distribution on particular global aspects
of the data currently at hand. The latter approach is usually
referred to as empirical Bayes estimation.6 There is a
non-iterative empirical Bayes method of moments for smooth-
ing the rates towards either local or global mean.69 Although
this method is useful to estimate the relative risks of a given
disease and in this sense it functions in a similar way as the
fully Bayesian approach, the latter produces more informative
interval estimates.70 71 The technical details of Bayesian
methods are well beyond the scope of this article but, in
essence, the Bayesian approach uses the observed data to
update prior knowledge. If there is a large number of
observations, then the prior knowledge has little influence
(ie, the observed rates provide good estimates); if not, the prior
knowledge is used to reduce (smooth) the sampling fluctua-
tions between the unreliable observed rates.

Spatial autocorrelation
Lack of independence of data from neighbouring areas gives
rise to spatial autocorrelation. The correlation or dependency
implies that rates for geographically close areas are more highly
related than those from areas that are geographically distant.72

For instance, suicide rates in neighbouring areas are likely to be
more similar than those in distant ones.15 This is because
neighbouring areas may have similar underlying social,
economic and cultural characteristics that trigger suicidal
behaviour. Detecting spatial dependency, which is accom-
plished by the use of spatial autocorrelation statistics, would
help researchers to justify their selected regression models in an
ecological analysis, or their smoothing techniques when
mapping a rare disease or when mapping in small boundaries
(see the sections on ecological analysis, spatial regression and
smoothing).73

Spatial autocorrelation statistics provide very useful sum-
mary information about the spatial arrangement of data in a
map.73 In fact, some of these statistics compare neighbouring
area values to assess the level of large-scale or global clustering.
Whenever a large number of neighbouring areas have either
reasonably large or small values, large-scale clustering may be
detected.4 The two most commonly used spatial autocorrelation
statistics for detecting global clustering in continuous areal data
(ie, morbidity and mortality rates) are the I statistic, developed
by Moran,74 and Geary’s c statistic.75 There is also a number of
spatial autocorrelation statistics available (Getis and Ord’s G*
statistic), which measure the amount of local clustering (ie, hot
spots of high or low values) by finding any association between
a value at a particular area and values of adjacent or nearby
areas.25 76

Spatial regression
Typically, we use some form of regression model in an
ecological analysis to predict, for example, suicide rates in
given areas with the area’s other attribute data such as poverty
or social cohesion15 (see the section on ecological analysis). In
such situations,77 we usually divide the study region into a set
of non-overlapping, administratively defined areas, and model
the counts of the number of cases within each area.78 These will
be accompanied by information on the population at risk in

different relevant age and sex groups in addition to other
factors such as socioeconomic status. If the risk within a given
area is constant, the distribution of the count for that area is
clearly a binomial distribution.34 However, if the risk is small
(eg, suicide mortality), one may approximate the binomial
distribution by the Poisson distribution.17 If there is evidence
that the Poisson model does not fit well, this indicates that
there is a component risk that has not been incorporated into
the model. This is an example of ‘‘extra-Poisson’’ variation or
overdispersion.79 The overdispersion may arise for several
reasons, including large numbers of cells having zero counts,
which may happen when a rare disease is being studied.36 To
cope with this problem, the Poisson model can be replaced by
the negative binomial regression model.80

In case the exploratory techniques uncover the nature of
spatial dependence (see the section on spatial autocorrelation),
a richer model involving spatial autocorrelation may be fitted.34

There are two empirical Bayesian models in which the spatial
dependency of the data can be taken into account.81 The first
model is a simultaneous autoregressive model,82 and the second
is a conditional autoregressive model.83 The conditional auto-
regressive model provides a more general framework with less
complexity, and is therefore preferred to the simultaneous
autoregressive model.77 More recently, the WinBUGS software
has provided a fully Bayesian analysis of the conditional
autoregressive model.84
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